This step allow to perform differential analysis on expression step results. This step is based on the DESeq package of Bioconductor.
diffana_1.txt
)Parameter | Type | Description | Default value |
---|---|---|---|
disp.est.method | string | The DESeq dispersion estimation method (pooled, per-condition or blind) | pooled |
disp.est.sharing.mode | string | The DESeq dispersion estimation sharingMode (maximum, fit-only or gene-est-only) | maximum |
disp.est.fit.type | string | The DESeq dispersion estimation fitType (local or parametric) | local |
r.execution.mode | string | The R execution mode. The available mode values are: process, rserve and docker. | process |
rserve.servername | string | The Rserve server name to use in rserve execution mode | not set |
docker.image | string | The Docker image to use in Docker execution mode. | genomicpariscentre/deseq:1.8.3 |
<!-- Differential analysis step --> <step id="mydiffanastep" skip="false" discardoutput="false"> <module>diffana</module> <parameters> <parameter> <name>disp.est.method</name> <value>pooled</value> </parameter> <parameter> <name>disp.est.sharing.mode</name> <value>maximum</value> </parameter> <parameter> <name>disp.est.fit.type</name> <value>parametric</value> </parameter> </parameters> </step>
Eoulsan differential analysis module use R with the package DESeq as statistical backend. Differential analysis module was tested with R 2.15 and DESeq 1.8.3 (Bioconductor 2.10). You need to install DESeq R packages on your computer or on a Rserve server:
$ sudo R > source("http://bioconductor.org/biocLite.R") > biocLite("DESeq")